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path and the composite insertions transform in the adjoint representation of the gauge

group. This provides a gauge invariant way to define the correlator of non-singlet opera-

tors. Since the basic loop preserves an SL(2, R) subgroup of the conformal group, we can

assign a conformal dimension to those insertions and calculate the corrections to the classi-

cal dimension in perturbation theory. The calculation turns out to be very similar to that

of single-trace local operators and may also be expressed in terms of a spin-chain. In this

case the spin-chain is open and at one-loop order has Neumann boundary conditions on the

type of scalar insertions that we consider. This system is integrable and we write the Bethe

ansatz describing it. We compare the spectrum in the limit of large angular momentum

both in the dilute gas approximation and the thermodynamic limit to the relevant string

solution in the BMN limit and in the full AdS5 × S5 metric and find agreement.
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1. Introduction

Over the past few years great progress has been made on calculating the spectrum of N = 4

supersymmetric Yang-Mills theory in four dimensions at large N . In the weak coupling

regime the perturbative calculation of the conformal dimensions of operators was mapped to

certain integrable spin-chain models. At strong coupling the system is described by strings

propagating on AdS5 × S5 and one may use the integrability of the classical σ-model to

calculate the dimensions of operators carrying large charges.

The simplest non-trivial scalar operators are words of arbitrary length composed of two

complex scalar fields. Such operators are said to be in the SU(2) sector and are the ones that

were studied the most. The one-loop anomalous dimension was related to the spectrum of

the spin-1/2 Heisenberg spin-chain [1]. The two and three loop anomalous dimensions (as

well as a conjectured all-loop expression) are given by the spectra of Hamiltonians of spin-

chains with longer range interactions [2 – 4]. Recently they were related to another type
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of condensed matter system, the Hubbard model, where all the long-range interactions are

repackaged as local interactions for some dual variables [5]. Other local operators involving

the fermions and gauge-fields were also studied to different degrees (see for example [6]).

On the string theory side the integrability of the classical σ-model was established

in [7]. Classical solutions corresponding to operators carrying large charges were found

even before, most notably the BMN states rotating on S5 [8] and the strings spinning in

AdS5 [9]. Many more solutions corresponding to states carrying different collections of

charges were found since then and in many cases the spectra as calculated from string

theory agrees with the perturbative result.1

Another interesting class of gauge invariant operators are Wilson loops, the trace of

the holonomy around a closed contour. Within the AdS/CFT correspondence [13] they are

evaluated in terms of fundamental strings that extend to the boundary of space [14, 15]

(they may also be described in certain cases by D3-branes and D5-branes [16 – 18]). Over

the years the surfaces corresponding to several different Wilson loops were found [19 – 25].

Still much less is know about those observables compared to local operators.

In [26] the integrability of the classical string σ-model in AdS5 × S5 was used to

organize the calculation of the surfaces associated with Wilson loop observables. In that

paper certain Wilson loops with periodic shapes and scalar couplings were evaluated by

imposing a similar periodic ansatz on the string solution. That reduced the σ-model to a

finite dimensional integrable system that was then solved classically, allowing to evaluate

those Wilson loops at strong coupling. But so far similar techniques have not been found

to calculate the expectation values of Wilson loops or their 2-point functions directly in

the gauge theory. In this paper we find a spin-chain that describes the expectation values

of some Wilson loop observables.

As we shall review, some very special Wilson loop operators (a single straight line

or a circle with constant coupling to one of the scalars) preserve a subgroup of the con-

formal group in four dimensions which includes an SL(2, R) factor. This is the group of

rigid conformal transformations in one dimension and we will classify deformations of the

symmetric Wilson loop by representations of this group.

This is in direct analogy to local operators, they are deformations of the conformally

invariant vacuum and may therefore be classified in representations of the conformal group.

Instead of the vacuum we are starting with the background which includes an SL(2, R)-

invariant Wilson loop and will classify its deformations in terms of representations of that

group.

In [27] we established this symmetry and proposed it as a way of classifying Wilson

loops. In most of the current paper we take a slightly different philosophy and instead of

studying the representations of the Wilson loops, we isolate the representations (or dimen-

sions) of the local insertions into the loop. We make some comments on the representations

of the Wilson loop itself towards the end of the paper.

A general Wilson loop operator will be very different from the symmetric one, much

like a general state in the gauge theory is not necessarily created by one local operator.

1For more details on the calculations of the spectrum of the dilatation operator see the reviews [10 – 12].
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But to simplify the general case one usually starts with a single local operator, likewise we

will study a local deformation of the Wilson loop.

The type of deformation of the loop on which we will concentrate is an insertion

of a word made up of some of the six scalars (we will restrict further to two complex

combinations of them) all at one point along the loop. The insertion will transform in the

adjoint representation of the gauge group and is made gauge invariant by the Wilson loop

on which it is sitting. More general insertions will include the fermionic fields as well as

field-strengths and covariant derivatives. One can also write those insertions in terms of

functional derivatives of the basic loop with respect to its path and other couplings.

The standard way of calculating the conformal dimension of a local operator is by

evaluating the two-point function with another local operator. Mimicking that, we will

consider the insertion of another “probe” operator into the Wilson loop. Thus we can

regard the expectation value of the Wilson loop with the insertion of two operators as a

gauge invariant definition for the two-point function of adjoint operators.

In section 2 we will review [27] and establish the notion of the conformal dimension of

a local deformation of the circular and straight Wilson loops.

Having set up the framework we proceed to calculate the dimensions of those insertions

by directly evaluating at one-loop in perturbation theory their two-point functions (i.e. the

vacuum expectation value of the Wilson loop with the two insertions). We do this in

the planar approximation, valid for large N . In our case, the difference from single-trace

operators is that the insertions are not cyclical, each has a beginning and an end and in the

planar approximation the order has to be kept. At tree-level this implies that the two point

function vanishes unless the two words are exactly identical (with the reversed order).

At one-loop the planar diagrams allow interactions between nearest neighbors, and

those interactions are exactly the same as between the letters in a single-trace local op-

erator. The exception are the outermost fields, which cannot interact with each-other by

planar graphs. Instead they interact with the rest of the Wilson loop. Just from those

considerations about the possible planar graphs we immediately see that the problem of

calculating the one-loop mixing matrix of those insertions can be mapped to the spectral

problem of a Hamiltonian of an open spin-chain. The interaction between the outermost

fields and the Wilson loop provides the boundary terms for the open-chain Hamiltonian.

For the type of insertions we will consider this interaction will not depend on the flavor

indices, and will be a constant. We find the regular SU(2) open spin-chain with Neumann

boundary conditions.

This system is integrable and may be solved in terms of the Bethe ansatz. Anybody

familiar with those techniques used to calculate the dimension of local operators would

immediately recognize the solution, but we will present it in detail in section 3.3. There

we will derive the spectrum in the dilute gas approximation and in section 3.4 we calculate

it in the thermodynamic limit.

Next, in section 4 we study the same system in string theory, by finding the relevant

classical solution to the string equations of motion on AdS5 × S5. We start with the

Wilson loop containing insertions of only one of the two complex scalars, which preserves

1/4 supersymmetry and is an open-string analogue of the BMN vacuum [8]. To preserve the
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maximal possible symmetry, one insertion is mapped to past infinity in global Lorentzian

AdS-space and the other insertion to future infinity. The boundary gauge theory for this

system lives on R×S3, and our Wilson loop will go from past infinity to the future and then

back along antipodal points on the S3. We present the string solution for these boundary

conditions and calculate the angular momentum carried by it.

To study the deformations of the basic solution we will take the BMN limit, concen-

trating near the center of the geometry, where the string solution is mapped to an infinite

surface in the pp-wave geometry. Using a cutoff on the size of this string, we can calculate

its spectrum of fluctuations and compare it to the solution of the Bethe equations. We find

complete agreement with the leading order result.

We go further and study the system with two angular momenta, which corresponds to

a large number of both of the complex fields. The equations we find are identical to those

of certain folded string solutions, but again describing open strings. Instead of the string

folding on itself it extends infinitely to the boundary of AdS5 and a fixed point on S5.

In section 5 we go back to studying the question suggested in [27], of evaluating the

dimension of a Wilson loop (rather than of the insertion into a Wilson loop). The Wilson

loop we consider will be circular (or straight) and have an insertion of a single adjoint

operator, and as argued there it may be organized in irreducible representations of SL(2, R).

To study them at the one-loop level in perturbation theory we consider the correlator of

such a Wilson loop with a single-trace local operator or with another Wilson loop.

In order to have control over the functional form of the two-point function we need

the local operator to coincide with a point along the Wilson loop (or for two loops, they

will have to coincide). Then we can again interpret any divergence as corrections to the

conformal dimension (i.e. SL(2, R) representation) of the Wilson loop.

Now there is a single insertion in the loop, which is traced over. So in terms of spin-

chains this will correspond to a closed chain, similar to local operators. Still the system

does not posses cyclical symmetry, at the planar level only the outermost fields in the

insertion can interact with the Wilson loop. Those interaction graphs will introduce extra

terms in the spin-chain Hamiltonian localized at a fixed position along the chain.

From this simple analysis of the possible planar diagrams we find a closed spin-chain

with a marked point specifying where the word starts and ends. In the planar approx-

imation, all interactions between the Wilson loop and the insertion will be around this

marked point. At the one-loop level, which we calculate explicitly, this interaction is a

flavor independent constant, giving a constant shift of the dimension of the loop compared

with the single-trace local operator made out of the same word.

We conclude with a discussion of the meaning of the calculations we have performed.

We also present some open questions and generalizations that will be left for future work.

In appendix A we give the details of the calculation of the Feynman graphs involving

interactions of the insertions with the Wilson loop.

2. Preliminaries

In this paper we are considering Wilson loop operators in N = 4 supersymmetric Yang-

– 4 –
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Mills theory

W =
1

N
TrP ei

R

(Aµẋµ+iyiΦi)ds , (2.1)

where Aµ is the gauge field and Φi are the six scalars (one may include also couplings to

the fermi-fields, but we do not write them explicitly). xµ(s) is a closed curve (or an infinite

one, assuming appropriate boundary conditions) and yi(s) are arbitrary couplings to the

scalars. Here we used Euclidean conventions, where the scalar term is multiplied by an i,

below we will also work in Lorentzian signature where for a time-like curve this i should

not be included.

If the path is an infinite straight line or a circle and if it couples to only one of the

scalars with the appropriate strength, say yi = |ẋ|δi6, this operator will preserve half the

supersymmetries of the vacuum [24, 28]. While there are a lot of interesting results for the

simple circular loop [29, 30, 16], we wish to consider more general operators but still limit

ourselves to operators close to the symmetric ones.

Consider a Wilson loop whose path is close to a circle of radius R in the (1, 2) plane

and the scalar couplings close to Φ6. We may write it as a deformation of the circular path

as

xµ(s) = xµ
0 (s) + εµ(s) , xµ

0 (s) = (R cos s, R sin s, 0, 0) , yi(s) = |ẋ0|δi6 + εi(s) ,

(2.2)

and then expand in powers of ε(s). By this procedure we may express an arbitrary Wilson

loop close to the circle as a sum over deformations of the basic circular loop (see for

example [31 – 33])

W [xµ, yi] =

(

1 +

∫

ds

[

εµ(s)
δ

δxµ(s)
+ εi(s)

δ

δyi(s)

]

+
1

2

∫

ds1 ds2

[

εµ(s1)ε
ν(s2)

δ2

δxµ(s1)δxν(x2)
+ · · ·

]

+ O(ε3)

)

Wcircle .

(2.3)

Those deformations may, in turn, be written as local insertions into the loop, the

functional derivatives with respect to xµ(s) introduce a field-strength Fµν ẋν or a covariant

derivative Dµ. the derivatives with respect to yi(s) insert the scalar field Φi. So the small

deformation of the circle may be written as

W [xµ, yi] =
1

N
TrP

[

(

1 +

∫

ds
[

iεµ(s)ẋν
0(s)Fµν(x0(s)) − εµ(s)|ẋ0|DµΦ6(x0(s))

− εi(s)|ẋ0|Φi(x0(s))
]

+ O(ε2)

)

ei
R

(Aµẋµ
0
+i|ẋ0|Φ6)ds

]

,

(2.4)

We did not write explicitly the O(ε2) term, it is straight-forward to derive it, but the

resulting expression is quite long. The only subtlety is that there is contact term, when

two functional derivatives act at the same point in addition to two F s there will be an

extra DF term.
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From this discussion we see that instead of considering a general path and general

scalar couplings we can take Wilson loops with p insertions of local operators in the adjoint

representations of the gauge group at different positions x1, . . . , xp along the loop

W [Op(xp) · · · O1(x1)] =
1

N
TrP

[

Op(xp) · · · O1(x1) ei
R

(Aµẋµ
0
+i|ẋ0|Φ6)ds

]

. (2.5)

The calculation of the expectation value of those operators may also be regarded as the

p-point function of the adjoint operators Oi along the circle. This interpretation relies on

the fact that the basic circular Wilson loop is a very natural object, it preserves half the

supersymmetries and is the most obvious way to connect non-singlet operators to form a

gauge invariant observable. In this paper we will mainly concentrate on the case of two

insertions, but also discuss a single one.

In [27] we studied the symmetry of the circle and line in a conformal field theory and

the representations of this symmetry group. Let us review it now.

Starting with the straight line, the subgroup of the conformal group SO(5, 1) of four

dimensional Euclidean space that keeps an infinite straight line invariant is SL(2, R)×SO(3).

The SO(3) is given by rotations around the line while the generators of SL(2, R) are time

translation Pt, dilation D and a special conformal transformation Kt. Those act on scalar

operators by
[J+, O] = [−iPt, O] = −∂tO ,

[J0, O] = [iD, O] = (∆ + xµ∂µ)O ,

[J−, O] = [iKt, O] = (x2∂t − 2txµ∂µ − 2t∆)O ,

(2.6)

The Wilson loop in N = 4 gauge theory with the appropriate coupling to the scalar

field Φ6 preserves half the supersymmetries of the vacuum. The even part of the full group

includes in addition to the conformal group also the SO(6) R-symmetry. The Wilson loop

breaks it to a supergroup whose bosonic part is SL(2, R) × SO(3) × SO(5) [28, 16]. The

SL(2, R) part is the one written above and it is left invariant by the Wilson loop with no

insertions (this was also noticed in [34]).

We may now look at other Wilson loops and ask how they transform under SL(2, R).

In [27] we studied this problem at tree-level and showed that for a single insertion of con-

formal dimension ∆ the Wilson loop will be in a representation of SL(2, R) with quadratic

Casimir −∆(∆−1). In section 5 we will take the first steps to include quantum corrections.

We will start, though, by considering two insertions. In that case it turn out to be

more useful to consider the representation of each of those operators under SL(2, R) rather

than the full object — Wilson loop with two insertions. Since the Wilson loop itself does

not break SL(2, R), we may ask in what way each of the local insertions breaks it and

assign to them a conformal dimension.

Consider the Wilson loop with two insertions, one at the origin and the other at t. For

t 6= 0 the Ward identity associated with the dilatational symmetry is

J0

〈

W [O′(t)O(0)]
〉

= (∆O + ∆O′ + t ∂t)
〈

W [O′(t)O(0)]
〉

= 0 . (2.7)

The solution to this differential equation is

〈

W [O′(t)O(0)]
〉

∝ 1

t∆O+∆O′
. (2.8)

– 6 –
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We are restricting ourselves to consider operators only along the line. We may still use

conformal symmetry to find the form of the two-point function, and the main advantage

is that since we have the Wilson loop running along that line, the operators need not be

singlets of the gauge group but rather may transform in the adjoint representation. We use

this method to define the dimension of an adjoint operator to be equal to ∆ as calculated

in (2.8).

The same can be done for the circle, which is related to the straight line by a conformal

transformation. The advantage over the line is that it is better defined — the line is

invariant only under gauge transformations that vanish at infinity. The generators of

SL(2, R) are now

J0 = − i

2

(

RP1 +
K1

R

)

,

J± = − iM12 ∓
i

2

(

RP2 +
K2

R

)

.

(2.9)

Pi and Ki are the generators of translations and conformal transformations in the plane of

the circle and M12 generates rotations in the plane.

If η is a radial coordinate in the plane of the circle and ζ in the orthogonal plane, we

define

sin θ =
ζ

r̃
, sinh ρ =

η

r̃
, r̃ =

√

(ζ2 + η2 − R2)2 + 4R2ζ2

2R
=

R

cosh ρ − cos θ
. (2.10)

In terms of those coordinates the action of the SL(2, R) generators on scalar operators is

[J0, O(θ, ρ, ψ)] = r̃−∆(− cos ψ ∂ρ + coth ρ sin ψ ∂ψ)r̃∆O(θ, ρ, ψ) ,

[J±, O(θ, ρ, ψ)] = ∓ r̃−∆ [sin ψ ∂ρ + (cos ψ coth ρ ± 1)∂ψ ] r̃∆O(θ, ρ, ψ) .
(2.11)

For operators along the circle of radius R, we take ρ → ∞ so r̃ → 2Re−ρ and the

action of J0 reduces to

[J0, O(ψ)] = (∆ cos ψ + sinψ ∂ψ)O(ψ) , (2.12)

hence the Ward identity for a loop with two insertions at 0 and ψ is

J0

〈

W [O′(ψ)O(0)]
〉

= (∆O + ∆O′ cos ψ + sin ψ∂ψ)
〈

W [O′(ψ)O(0)]
〉

= 0 . (2.13)

This is solved by
〈

W [O′(ψ)O(0)]
〉

∝ cos|∆O−∆O′ |(ψ/2)

sin∆O+∆O′ (ψ/2)
. (2.14)

In the case where the two operators have the same dimension the denominator is a power

of sin(ψ/2), and after rescaling the proportionality constant by (2R)−2∆, we get that the

expectation value is just a power of the distance between the two insertions at 0 and at ψ.

Note that in [27] we focused mainly on another basis, where J0 = i∂ψ. In that basis

the eigenstates of J0 are Wilson loops with Fourier modes of those insertions, i.e. they

are smeared around the circle with phase factors eimψ. That basis is natural for some

– 7 –
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purposes, particularly when studying the representation of a loop with a single insertion,

but it also has some difficulties, for example the representations we find in that basis are

generally non-unitary. In this paper we will use the basis written above2 which seems

more appropriate for the study of local insertions into the loop. Insertions at ψ = 0 form

highest-weight representations of SL(2, R).

3. Gauge theory calculation

3.1 Tree-level

Let us start performing explicit calculations. We consider the two complex combinations

of the scalar fields

Z =
1√
2
(Φ1 + iΦ2) , X =

1√
2
(Φ3 + iΦ4) . (3.1)

Note that we chose them so they will not contract at tree-level with Φ6 which appears in

the phase factor of the Wilson loop.

We will insert two operators transforming in the adjoint representation into the Wilson

loop. The equations below are written for the case of the straight line, but they are

essentially the same for the circle. We take one operator O at the origin to be a word made

of the letters Z and X and another operator, O′†, made of the complex conjugates Z̄ and

X̄ inserted at t. Explicitly we have

W [O′†(t)O(0)] =
1

N
TrP

[

O′†(t)O(0) ei
R

(At+iΦ6)dt
]

. (3.2)

Taking the standard scalar propagator, which is proportional to the identity matrix

on the color indices amounts to a gauge choice which turns out to be very convenient for

our calculation; at tree-level the holonomy will not contribute. Thus at leading order the

expectation value of the Wilson loop will involve just the contraction of those two words.

In effect it is
〈

1

N
Tr

[

O′†(t)O(0)
]

〉

. (3.3)

There is a single trace over the two words at the origin and at t, so the only planar

contribution at tree-level is the contraction of the first letter of the operator at the origin

with the last of the operator at t, the second at the origin with the next-to-last at t and so

on. Each contraction comes with a Kronecker delta on the flavor index, Z or X and factor

of λ/8π2t2, where λ = g2
YMN is the ’t Hooft coupling. So the final answer at tree-level may

be written in matrix notations as

〈

W [O′†(t)O(0)]
〉

∝
(

λ

8π2t2

)K

I , (3.4)

where K is the length of the word and I is the identity matrix on the flavor indices. The

relevant graph is shown in figure 1.

2N.D. would like to thank Zack Guralnik for the inspiration to look at this basis.
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Figure 1: The tree-level diagram for a circular Wilson loop (the dotted line) with the insertion of

two words each made of three scalars. The Wilson loop sets the order at which the gauge indices

are contracted and only the depicted diagram is planar.

If we were studying the 2-point function of single-trace local operators we would have

to account for the cyclicity of the trace, so TrZZX for example, would have a nonzero

contraction with Tr Z̄X̄Z̄ at tree-level even in the planar approximation. In our case they

would not, and since local operators are described in terms of periodic spin-chains, it seems

like the insertions into the Wilson loop will be described by open spin-chains.

A local operator which is the trace of a word of length K has dimension ∆ = K

classically. Similarly the insertion of the word of length K at the origin has classical

dimension (i.e. eigenvalue of iD or J0) ∆ = K as can be seen from the exponent of t in the

classical 2-point function (3.4).

3.2 One-loop

Beyond tree-level the Feynman diagrams will generically diverge and we will have to renor-

malize the Wilson loops. The theory of renormalization of Wilson loop operators is quite

complicated [35]. In general there will be a linear divergence proportional to the circum-

ference of the loop and in addition, if the curve is not smooth there may be logarithmic

divergences. Such divergences arise also when the operator has end-points (with quark in-

sertions) [36 – 38] and the same happens from the insertion of adjoint operators (see [39]).

In our case the inclusion of the coupling to the scalar Φ6 in the exponent guarantees

that without the local insertions the Wilson loop is a finite operator that does not require

renormalization. The local insertions change that, they lead to logarithmic divergences in

perturbation theory. The divergences associated with cusps and intersections in the loop

are well studied and depend on the angle of the cusp. In a similar way the divergences

coming from the local insertion will depend on the insertion. We have not explored all

possible divergences coming from such insertions at high orders in perturbation theory.

We contend ourselves for now with analyzing only the relevant one-loop diagrams.

Our prescription for the renormalization of the Wilson loop will involve multiplicative

renormalization of each of the insertions

Wren[Op · · · O1] = ZOp · · ·ZO1
W [Op · · · O1] . (3.5)

– 9 –
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b. c.a.

Figure 2: The planar one-loop graphs that do not involve the Wilson loop are the same as for single

trace local operators. The self energy diagrams like (a) includes all possible fields going around

the loop. The H-diagrams, like (b), involves the exchange of a gluon between nearest-neighbors.

The X-diagrams, like (c), involves the quartic scalar term and leads to the permutation term in the

spin-chain Hamiltonian. Note though, that the H and X interaction graphs involving the first and

last scalars are not planar and therefore are not included.

In the usual fashion those ZOi
factors will cancel the divergences that come from subgraphs

that approach the insertion Oi rendering Wren finite.

In a conformal field theory we associate divergences with the renormalization of the

conformal dimension. We propose the same interpretation here, and since the renormal-

ization factors are associated with each individual insertion, this means that we should

associate a conformal dimension to each insertion. This is the justification for this inter-

pretation that was presented in the preceding sections. If there is a single insertion into

the loop we are free to associate the conformal dimension either with the insertion or with

the entire Wilson loop.

Going back to the line with two insertions, let us consider as a first example each of

the insertions to be just a single scalar field, the first Z(0) and the other Z̄(t). There are

two graphs that contribute at the one-loop level; the self-energy graph and a graph where

the scalar propagator exchanges a gluon with the Wilson loop (like in figure 3). Each of

these graphs diverges, but together the divergences exactly cancel as can be extracted from

the calculations in [29]. We review this calculation in appendix A.

From the argument above we know that a Wilson loop with the insertion of any number

of scalar fields Z or X (and their conjugates) will have a finite expectation value as long

as none of the scalar insertions are at the same point. For coincident scalars there will be

more divergences coming from the exchange of gluon between the two scalar propagators

(H-graph) and from the quartic scalar interaction vertex (X-graph). Those divergences will

lead to a non-trivial renormalization of the insertions that are made up of more than one

scalar.

All those graphs include only the interactions between the scalars in the insertion and

do not involve the Wilson loop (see figure 2). So they were all evaluated before in the

context of calculating the one-loop corrections to the dimensions of local operators. See

for example [8, 40 – 42].
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Figure 3: At the planar one-loop level only the external most lines may interact with the Wilson

loop. These diagrams come from expanding the holonomy to first order bringing down the gauge

field and Φ6. This gauge field can then be contracted with the outermost scalars. Note that the

scalars Z and X do not contract with Φ6.

The Z-factor associated with the H-graph is

ZH = I − λ

16π2
ln Λ I , (3.6)

where I is the identity in flavor-space and Λ a UV-cutoff. If the insertion is made of K

scalar fields there will be K − 1 planar H-graphs, connecting nearest-neighbors.

The X-diagrams mix between nearest-neighbors and their divergences are compensated

by the Z-factor

ZX = I +
λ

16π2
(I − 2P ) ln Λ , (3.7)

where P permutes the two scalars. Again there will be K − 1 such graphs.

Next we have the self-energy graphs. we associate half of those divergences with the

composite insertion. The other half will be associated with the other end of the propagator

(and may be canceled by the divergences in the interaction with the Wilson loop, as

explained above). There are K such graphs, each giving a renormalization factor

Zself-energy = I +
λ

8π2
ln Λ I . (3.8)

Then there are the graphs involving the Wilson loop and in the planar limit will connect

only to the outermost scalars in the insertion with the loop (see figure 3). Those are exactly

the same graphs that appeared when there were isolated scalars along the loop. So those

graphs contribute a Z-factor that cancels a single self-energy one

Zboundary = I − λ

8π2
ln Λ I . (3.9)

Note that those graphs too are indifferent to the flavor, i.e. they are the same for an X or

a Z insertion.

Combining all those we find the total one-loop renormalization factor

Ztotal = I +
λ

8π2
ln Λ

K−1
∑

k=1

(I − Pk,k+1) . (3.10)
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3.3 Spin-chain interpretation and the Bethe ansatz

The matrix of anomalous dimensions is given by

Γ =
1

Z

dZ

d ln Λ
∼ λ

8π2

K−1
∑

k=1

(I − Pk,k+1) . (3.11)

Eigenvectors of this mixing matrix will undergo only multiplicative renormalization which

is due to the anomalous dimension. From the Ward identity for insertions into the line the

correlator of two insertions On of length K with eigenvalues γn of Γ is

〈

W [O†
n(t)On(0)]

〉

∼ 1

t2(K+γn)
. (3.12)

Here O†
n is the operator with the complex conjugate fields in the reverse order.

So at one loop the anomalous dimensions of the insertions into the loop are given by

the eigenvalues of Γ. As presented in [1], this matrix may be regarded as the Hamiltonian

of a one-dimensional spin-chain. In their case it was a periodic chain, but in ours it’s open,

it starts at k = 1 and ends at k = K. The total number of Z and X insertions is fixed

as they cannot move off the chain, so we have purely reflective, or Neumann boundary

conditions.

It turn out this system is integrable and it is well known how to diagonalize its Hamil-

tonian by use of the Bethe ansatz. Actually very similar open spin-chains were found to

describe the anomalous dimension of operators in a variety of different systems [43 – 56].

Most of those papers consider systems with fundamental fields, either by taking a gauge

theory with N = 2 supersymmetry dual to an orbifold of the pp-wave geometry or by

looking at defect CFTs, dual to string theory with a D-brane inside AdS5×S5. The funda-

mental fields at the beginning and end of the word are a simple way to construct a gauge

invariant operator which is not periodic.

Our system does not require adding extra degrees of freedom to the theory, since any

gauge theory contains Wilson loop observables. In that regard it is similar to the construc-

tion of [48, 49] which relied on the determinant operator dual to a maximal giant graviton.

That observable too is an object within N = 4 gauge theory and not a deformation of it.

Though we can quote the results of the other papers that considered open spin-chains,

let us be pedagogical and go over the steps of solving the open spin-chain.

One obvious eigenstate of the Hamiltonian is the state with all Zs (or all Xs), this is

the ferromagnetic vacuum. This state has vanishing anomalous dimension and is super-

symmetric.

Then we can look at states with a single X among all the Zs. The Hamiltonian will

shift its position along the chain, so we expect the solutions to be standing waves. Take

the superposition of states with the X inserted at position k

|ψ〉 =
K

∑

k=1

cos p(k − 1/2) |k〉 , (3.13)
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with p = nπ/K for integer n < K (this should be thought of as the lattice version of

Neumann boundary conditions). These are all eigenstates of the Hamiltonian where the

only subtlety comes from treating the boundaries

Γ|ψ〉 =
λ

8π2

[

K−2
∑

k=2

[

2 cos p(k − 1/2) − cos p(k − 3/2) − cos p(k + 1/2)
]

|k〉

+
[

cos(p/2) − cos(3p/2)
]

|1〉 +
[

cos p(K − 1/2) − cos p(K − 3/2)
]

|K〉
]

=
λ

2π2
sin2 p

2
|ψ〉 .

(3.14)

The anomalous dimensions of those operators with a single X insertion are thus

γn =
λ

2π2
sin2 nπ

2K
∼ λn2

8K2
. (3.15)

The last expression is valid for K À n.

The story gets more complicated when considering more X insertions, so we use the

methods of the algebraic Bethe ansatz [57] (see for example [58]). The theory of open spin-

chains is well developed but for our purpose it will not be necessary to use those techniques.

Since our boundary conditions are purely reflective we can simply add an image chain with

k = K + 1, . . . 2K, and consider the periodic chain of length 2K.

Since the construction has to be symmetric under reflections, for every impurity at

position k we have to place another one at position 2K + 1− k, or in the momentum basis

require symmetry under p → −p. The Hamiltonian of the regular closed Heisenberg chain

of length 2K will include in addition to the interaction terms between the spins at positions

k = 1, . . . ,K and their images at K +1, . . . , 2K also the terms acting on positions K, K+1

and 2K, 1
λ

8π2
(I − PK,K+1 + I − P2K,1) . (3.16)

Due to the reflection symmetry the spin at position K and K +1 are always equal and the

same is true for the other pair. So this extra term vanishes and we may use the regular

Hamiltonian for the periodic spin-chain of length 2K and by imposing reflection symmetry

we will find the spectrum of the open spin-chain.

The Bethe equation for a closed chain is given in terms of the Bethe roots related to

the momenta by

uk =
1

2
cot

pk

2
. (3.17)

For a chain of length 2K and 2M impurities the equations are

(

uj + i/2

uj − i/2

)2K

=

2M
∏

k=1

k 6=j

uj − uk + i

uj − uk − i
. (3.18)

The right hand side corresponds to the interaction of the impurity j with all the other

impurities. In the last equation we considered an arbitrary distribution of impurities, but
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reflection symmetry requires that those impurities form pairs with opposite momenta, so

uM+1 = −u1 and so on. Accounting for that, the last equation reads

(

uj + i/2

uj − i/2

)2K

=

M
∏

k=1

k 6=j

(uj − uk + i)(uj + uk + i)

(uj − uk − i)(uj + uk − i)
. (3.19)

For consistency, for any solution to this system with a positive uj there has to be another

one with negative root, and this indeed holds.

The anomalous dimension for any solution is given by the sum over the individual

impurities (counting every pair of impurities only once!)

γn =
λ

2π2

M
∑

k=1

sin2 pk

2
=

λ

8π2

M
∑

k=1

1

u2
k + 1/4

. (3.20)

With a single impurity, or M = 1 we find the equation
(

u + i/2

u − i/2

)2K

= 1 ⇒ u =
1

2
cot

πn

2K
. (3.21)

Those are the same values of the momenta we found before and as stated the anomalous

dimensions are

γn =
λ

2π2
sin2 πn

2K
∼ λn2

8K2
. (3.22)

Later we will compare this to the AdS result.

3.4 The thermodynamic limit

We can also solve the Bethe equations in the thermodynamic limit, when K → ∞ and

M → ∞ with a fixed ratio M/K. In that limit the roots condense into cuts in the complex

plane. This was studied in [59 – 62] for closed spin-chains, dual to closed strings. In those

examples they always took solutions that were symmetric under u → −u, so for every cut

on the right of the imaginary axis there was a mirror cut on the left.

This was done to guarantee that the total momentum vanishes, though this is a much

stronger constraint. In our case this is exactly the symmetry required so those solutions

of the closed chain are also solutions of our open spin-chains. We can copy their results

remembering to take only one of the cuts into account.

To review the solution, consider the logarithm of (3.19)

2K ln
uj + i/2

uj − i/2
= 2πinj +

M
∑

k=1

k 6=j

ln
(uj − uk + i)(uj + uk + i)

(uj − uk − i)(uj + uk − i)
. (3.23)

nj are arbitrary integers, corresponding to different branches of the logarithm. We will

focus on the solution where all the nj are equal (the image roots of course have −nj). In

the large K limit we may look at solutions were all uj scale with K. In that limit, after

rescaling back to finite quantities the equation becomes

1

uj
= π nj +

2

K

M
∑

k=1

k 6=j

uj

u2
j − u2

k

. (3.24)
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In this limit the roots form smooth curves on the complex plane around π nj, where

we may introduce the root density

ρ(u) =
1

M

M
∑

j=1

δ(u − uj) . (3.25)

We label C the contour along which the eigenvalues are distributed. By the definition ρ(u)

is normalized to ∫

C
du ρ(u) = 1 , (3.26)

and the equations for the roots are represented by the singular integral equation (with

principle part prescription)

2M

K
−
∫

C
dv

ρ(v)u2

u2 − v2
= 1 − πnu . (3.27)

The anomalous dimension is

γM =
λ

8π2

M

K2

∫

C
du

ρ(u)

u2
. (3.28)

The solution to this equation involves analytically continuing to negative M where

the eigenvalues are all real, so the contour C is given by an interval on the real axis. For

the details of the solution we refer the reader to [59, 60]. We just quote the final answer

(for nj = 1), that the anomalous dimension is given by the solution to the transcendental

equations involving elliptic integrals of the first and second kind3

γM =
λ

8π2K
K(k)

(

2E(k) − (2 − k2)K(k)
)

,

M

K
=

1

2
− 1

2
√

1 − k2

E(k)

K(k)
.

(3.29)

4. String-theory description

Let us now describe the same system, a Wilson loop with two insertions in the dual string

theory on AdS5 × S5. As in the BMN construction [8] we map one of the insertions to the

infinite past in global Lorentzian AdS5 and the other one to future infinity. Those local

insertions are connected by the Wilson loop which in this picture will run up and down

two lines at antipodal points on the R × S3 boundary.

To describe the Wilson loop in supergravity we have to find a solution of the classical

string equations of motion that satisfies the following properties:

1. It should extend to the two lines on the boundary of AdS5 and when it reaches the

boundary it should be at the point of S5 that corresponds to the scalar Φ6 (we’ll call

that the north pole).

3The only difference from [59, 60] are a few factors of 2, because we consider only the roots to the right

of the imaginary axis. Also they use a definition of the elliptic integral whose modulus is the square of

our k.
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2. Depending on the number of Zs and Xs the world sheet should carry angular mo-

mentum around two orthogonal angular directions on S5, φ1 and φ2 (which are also

orthogonal to the north pole).

3. For the operator with a large number of Zs and no Xs, as the surface gets close to

the center of AdS5, it should approach the large circle in the φ1 direction on S5 (the

equator). Then one can zoom in on part of the world-sheet near the center of AdS

and the equator, and take a Penrose limit. In that limit it should reduce to a solution

of string theory on the maximally supersymmetric pp-wave background. Some of the

excitations of that solution would correspond to X impurities.

The metric of AdS5 of curvature radius L in global coordinates is

ds2 = L2
[

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3

]

, (4.1)

where dΩ2
3 is the metric on a unit size S3. On the S5 we will restrict our ansatz to an S4

subspace with metric

ds2 = L2
[

dθ2 + sin2 θ
(

dψ2 + cos2 ψ dφ2
1 + sin2 ψ dφ2

2

)]

, (4.2)

The relevant part of the Green-Schwarz string action is

S =
L2

4πα′

∫

dσ dτ
√
−hhαβ

[

− cosh2 ρ ∂αt ∂βt + ∂αρ ∂βρ + ∂αθ ∂βθ

+ sin2 θ
(

∂αψ ∂βψ + cos2 ψ ∂αφ1 ∂βφ1 + sin2 ψ ∂αφ2 ∂βφ2

)

]

.

(4.3)

Now we solve the equations of motion stemming from this action like in [63, 64, 10, 26],

by assuming a periodic ansatz

ρ = ρ(σ) , θ = θ(σ) , ψ = ψ(σ) ,

t = ωτ , φ1 = w1τ , φ2 = w2τ .
(4.4)

The string Lagrangean in the conformal gauge reduces to

L =
L2

4πα′

[

(ρ′)2 + ω2 cosh2 ρ + (θ′)2 + sin2 θ
(

(ψ′)2 − w2
1 − (w2

2 − w2
1) sin2 ψ

)]

. (4.5)

4.1 Solution with one angular momentum

Let us search first for solutions carrying angular momentum in one direction, so we try an

ansatz with ψ = 0 and w2 = 0. The Lagrangean is

L =
L2

4πα′

[

(ρ′)2 + ω2 cosh2 ρ + (θ′)2 − w2
1 sin2 θ

]

, (4.6)

and the equations of motion are

ρ′′ − ω2 cosh ρ sinh ρ = 0 ,

θ′′ + w2
1 cos θ sin θ = 0 .

(4.7)
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Figure 4: A depiction of the string solution on AdS5 × S5. The string fills an AdS2 subspace of

AdS5 (on the left). Near the boundary of AdS it is located at the north pole of an S2 ⊂ S5 (on the

right). Away from the boundary it is no longer at the north pole and rotates around the sphere

and as it gets close to the center of AdS it approaches the equator. The dotted circles represent

the region one zooms on to get the BMN limit.

Those may be immediately integrated to

−(ρ′)2 + ω2 cosh2 ρ = (θ′)2 + w2
1 sin2 θ = κ2 . (4.8)

The two integrals of motion have to be equal to each other due to the Virasoro constraint.

The equation for the AdS coordinate ρ is very simple and to get a single smooth surface

that extends from the boundary to the center of AdS5 and back one has to impose ω = κ

and the solution is

sinh ρ =
1

sinh κσ
. (4.9)

For the S5 coordinate, if w1 < κ the solution will wrap the S2 an infinite number of times

while for w1 ≥ κ it will oscillate an infinite number of times between θ = 0 and the maximal

value at sin θ0 = κ/w1. In those cases the solution will be given by elliptic integrals, but

the desired solution has w1 = κ = ω and then

sin θ = tanh κσ =
1

cosh ρ
. (4.10)

Let us verify that this solution satisfies the correct boundary conditions. At σ = 0 we

find θ = 0 and ρ → ∞. This means that the surface approaches the boundary of AdS5 as

specified and on the sphere gets closer to the north-pole associated to the scalar Φ6. As

σ → ∞ we get ρ ∼ 0 and θ → π/2, so as the string comes close to the center of AdS5,

it gets to the equator of S2 and rotates around it. This range of σ covers only half the

world-sheet and we should analytically continue to negative σ beyond σ → ∞ to describe

the part of the string extended in the other direction in AdS5 (also allowing for negative

ρ). We illustrate this surface in figure 4.

The total angular momentum carried by the string is given by the integral (including

both branches of the solution with positive and negative σ)

J =

∫

Pφ =
L2

πα′

∫ σmax

0
dσ sin2 θ φ̇ =

√
λ

π
(κσmax − tanh κσmax) . (4.11)
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Here σmax is a cutoff on the length of the world-sheet. The energy carried by the string is

E =

∫

Pt =
L2

πα′

∫ σmax

0
dσ cosh2 ρ ṫ =

√
λ

π
(κσmax − coth κσmax + cosh ρ0) . (4.12)

ρ0 is a regulator at large ρ (small σ), but this divergence is removed by an extra boundary

contribution, yielding in the limit of large κσmax the result

E = J . (4.13)

4.2 Supersymmetry

We show now that this solution carrying angular momentum around a single circle preserves

1/4 of the supersymmetries of the background. Using the vielbeins (only for the directions

that are turned on)

e0 = L cosh ρ dt , e1 = Ldρ , e5 = Ldθ , e6 = L sin θ dφ . (4.14)

Γa will be ten real constant gamma matrices and we define γµ = ea
µΓa and Γ? =

Γ0Γ1Γ2Γ3Γ4 the product of all the gamma matrices in the AdS5 directions. With this the

dependence of the Killing spinors on the relevant coordinates may be written as (see for

example [65 – 68])

ε = e−
i
2
ρ Γ?Γ1e−

i
2
t Γ?Γ0e−

i
2
θ Γ?Γ5e

1

2
φ Γ56ε0 , (4.15)

where ε0 is a chiral complex 16-component spinor. This satisfies the Killing spinor equation4

(

Dµ +
i

2L
Γ?γµ

)

ε = 0 . (4.16)

The projector associated with a fundamental string in type IIB is

Γ =
1√−g

∂τxµ∂σxνγµγνK , (4.17)

where g is the induced metric on the world-sheet and K acts on spinors by complex conjuga-

tion. The number of supersymmetries preserved by the string is the number of independent

solutions to the equation Γε = ε.

For our surface

Γ =
cosh2 ρ

(cosh2 ρ + 1) sinh ρ

(

− cosh ρΓ01 + Γ05 − sin θ Γ61 + sin2 θ Γ65

)

K . (4.18)

The equation has to hold for all σ and τ . Since Γ?Γ0 commutes with Γ?Γ5 and with Γ56

and also Γ?Γ1 commutes with Γ?Γ5 we may write the Killing spinor as

ε = e−
i
2
ρ Γ?Γ1−

i
2
θ Γ?Γ5e−

i
2
ωτ(Γ?Γ0+iΓ56)ε0 . (4.19)

4Dµ = ∂µ + 1

4
ωab

µ Γab and the only relevant non-zero components of the spin-connection are ω01

t = sinh ρ

and ω56

φ = − cos θ.
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Since Γ does not depend on τ , the only place τ appears in the projector equation is in the

second exponential of this expression for the Killing spinors. To eliminate this dependence

we impose the condition

Γ?Γ056ε0 = −iε0 . (4.20)

Now commuting the terms in the projector Γ through the remaining exponential

in (4.19), remembering that K acts by complex conjugation, we get

Γε =
cosh2 ρ

(cosh2 ρ + 1) sinh ρ

[

e−
i
2
ρΓ?Γ1+ i

2
θ Γ?Γ5 (− cosh ρΓ01 + Γ05)

+ e
i
2
ρ Γ?Γ1−

i
2
θ Γ?Γ5

(

− sin θ Γ61 + sin2 θ Γ65

)

]

Kε0

=
cosh2 ρ

(cosh2 ρ + 1) sinh ρ
e−

i
2
ρ Γ?Γ1−

i
2
θ Γ?Γ5

×
[

eiθ Γ?Γ5 (− cosh ρΓ01 + Γ05) + eiρ Γ?Γ1

(

− sin θ Γ61 + sin2 θ Γ65

)

]

Kε0 .

(4.21)

Finally we expand the exponents in the last line, use (4.10) to relate θ and ρ and the

complex conjugate of (4.20) to replace Γ6 by other gamma matrices. Then almost all the

terms cancel and we are left simply with

Γε = −e−
i
2
ρ Γ?Γ1−

i
2
θ Γ?Γ5 Γ01Kε0 . (4.22)

So the projector equation Γε = ε is solved by all constant spinors satisfying (4.20) and

−Γ01Kε0 = ε0 . (4.23)

It is easy to verify that those two conditions are consistent with each-other, so there are

eight linearly independent real solutions to this equation. Thus the string solution preserves

1/4 of the supersymmetries.

Note that each of those two conditions by themselves correspond to half-BPS con-

figurations. (4.20) relates the propagation in time to the rotation around a big circle on

S5, This condition is appropriate to the string state dual to the local operator Tr ZJ (the

BMN ground state) which preserves half the supersymmetries of the AdS background. For

large σ when ρ → 0 and θ → π/2 our solution approaches the BMN regime (as shall be

explained in the following subsection) and that part of the world-sheet preserves half the

supersymmetries.

On the other hand for small σ (near the boundary of AdS)

Γ ∼ −Γ01K , (4.24)

so any constant spinor satisfying (4.23) will solve the projector equation. That is not

surprising, since near the boundary of AdS the effect of the scalar insertions at past infinity

are not noticed and the surface looks like that of the half-BPS straight Wilson line.

So in those two asymptotic regimes the surface preserves half the supersymmetries,

but globally it preserves the intersection of the two conditions and is 1/4 BPS.
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4.3 BMN limit

Let us focus on the part of the world-sheet near the center of AdS5. There we may go

to the BMN limit [8], by taking L → ∞ and using the coordinates x+ = (t + φ)/2,

x− = L2(t−φ)/2, y = L(π/2−θ) and r = Lρ. Combining r and y with the S3 components

of AdS5 and S5 into four-vectors, the metric becomes

ds2 = −4dx+dx− − (~r 2 + ~y 2)(dx+)2 + d~r 2 + d~y 2 . (4.25)

The solution above survives in the limit and turns into

x+ = τ , y1 ∼ |r1| . (4.26)

To explain the last equality, y1, which corresponds to the distance above the equator is

always positive while r1, which is the rescaled ρ is allowed to extend to both positive

and negative values, corresponding to the motion in the direction of two points on the

boundary S3.

Since this is a solution of the full theory, it will also be a solution in this limit. Consider

the string Lagrangean in the light-cone gauge [69]

L =
1

4πα′

[

(~̇r )2 − (~r ′)2 + (~̇y )2 − (~y ′)2 − (~r 2 + ~y 2)
]

. (4.27)

Taking the ansatz r1 = r1(σ) and y1 = y1(σ) gives the equations of motion

r′′1 − r1 = 0 , y′′1 − y1 = 0 , (4.28)

and we choose the solution

r1 = a sinhσ , y1 = a cosh σ . (4.29)

In the limit when a → 0 this reduces to a string with a right-angle y1 = |r1|. The solutions

with finite a can also be extended to the full metric, if instead of w1 = κ we take them

slightly different, the surface will not get all the way to the equator, but will stay a bit

north of it. After taking the BMN limit, this distance from the equator becomes ymin = a.

Those are solutions of the full string equations of motion in Lorentzian signature,

but the equations (4.28) are identical to those for a particle in an inverted 2-dimensional

harmonic oscillator. The solution corresponds to a particle coming from infinity with energy

very close to the maximum of the potential and with a small impact parameter, so it is

deflected by a π/2 angle.

This solution naively carries infinite energy, but this is the standard divergence asso-

ciated with the infinite string solutions describing Wilson loops [20]. It does carry infinite

angular momentum J . In the light-cone gauge the extent of the world-sheet coordinate σ

is identified with the conserved momentum 2πα′p+ conjugate to x−, related to the angular

momentum by J = L2p+ = α′
√

λ p+. The BMN background we are considering does not

contain D-branes, so the strings have to extend to infinity and carry infinite J .

In order to study the small fluctuations around this solution we will need to impose

a cutoff on J . A careful treatment will require quantizing the full solution (4.9), (4.10)
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beyond the BMN limit. But we expect the excitations to be confined close to the region

described by the pp-wave metric, so we will try to quantize open strings with a finite J in

that limit ignoring the fact that the strings cannot end at finite r and y.

Since the equations of motion are linear they are not affected by the background

solution and will be solved by harmonic functions, like

yi = eiωpτ sin pσ . (4.30)

The energy of such a state will be similar to the closed string excitations

ωp =
√

1 + p2 . (4.31)

The only difference is the quantization condition on p, instead of requiring periodicity

over the interval of 0 ≤ σ ≤ 2πJ/
√

λ, we take functions that satisfy Dirichlet boundary

conditions at the ends of such an interval. Hence the allowed values of p are half of those

for closed strings p = n
√

λ/2J for integral n.

The dimension of such an excitation is therefore

∆ − J = ωn =

√

1 +
λn2

4J2
∼ 1 +

λn2

8J2
, (4.32)

This precisely agrees with (3.22)!

The anomalous dimension is four times smaller than for the closed string excitations

with λn2/2J2. On both the spin-chain and the string calculations this factor of four comes

from changing from functions that are periodic over the interval to functions whose period

is double the interval.

4.4 Solution with two angular momenta

In the general case, when both w1 and w2 are non-zero the equations of motion are

ρ′′ − ω2 cosh ρ sinh ρ = 0 ,

θ′′ − sin θ cos θ((ψ′)2 − (w2
2 − w2

1) sin2 ψ − w2
1) = 0 ,

ψ′′ + cot θ θ′ψ′ + (w2
2 − w2

1) sin ψ cos ψ = 0 .

(4.33)

The Virasoro constraint still gives two integrals of motion

−(ρ′)2 + ω2 cosh2 ρ = (θ′)2 + sin2 θ
[

(ψ′)2 + (w2
2 − w2

1) sin2 ψ + w2
1

]

= κ2 . (4.34)

Again we take ω = κ to get a solution that extends to all values of ρ and get the same

solution as before for the AdS5 side

sinh ρ =
1

sinh κσ
. (4.35)

On the S5 side it’s simple to check that the following quantity is also an integral of

motion

µ2 = sin2 θ sin2 ψ +
sin4 θ(ψ′)2

w2
2 − w2

1

+
(sin ψ θ′ + sin θ cos θ cos ψ ψ′)2

w2
2

. (4.36)
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On the boundary of the world-sheet, where σ = 0 the string will sit at the point θ = 0. We

should find a solution where ψ is not a constant 0 or π/2 so it carries angular momentum in

both directions and in addition we have to require that the world-sheet extends to infinite

σ without an infinite number of oscillations.

To study this system it is useful to switch to ellipsoidal coordinate [70, 71] and find

the solutions in terms of hyper-elliptic curves. We will not present that analysis here, since

after studying that system of equations we found that it is possible to write the relevant

solution easily in terms of θ and ψ. As it turns out, the requirement that the range of σ

diverge leads to a separation of scales. For small σ the coordinate θ changes from 0 to the

final value of π/2. The coordinate ψ changes at a much longer scale, remaining constant

for all finite values of σ and varying only on a diverging scale.

Let us solve the equations under those assumptions and then show that they are

consistent. First take ψ = ψ0 a constant, so ψ′ = 0, which leads to an equation for θ similar

to the case with one angular momentum, (4.7). In this equation the terms proportional to

w2
1 and w2

2 serve as potential terms, and the solution will correspond to a string coming

in from infinity and climbing up to the top of the potential at an infinite time. Assuming

w2
1 < w2

2, the solution will go mainly in the less steep direction of w2
1 at ψ = 0. With the

remaining residual energy it will then move away from ψ = 0 into the other plane with

rotation w2
2 (the ellipsoidal coordinates mentioned above are useful to verify this).

Hence the Virasoro constraint is

(θ′)2 + w2
1 sin2 θ = κ2 . (4.37)

To get a solution that extends to infinite time we have to set w2
1 ∼ κ2 (the difference being

infinitesimal, important in what follows) and the solution, as before, is

sin θ = tanh κσ . (4.38)

Now let us focus on the equations for ψ, which varies on a much longer scale than θ

does, so we may now assume sin θ = 1. Therefore we are studying the motion of the string

inside an S3 ⊂ S5 which is very similar to the system studied in [72] where some classical

“folded-string” solutions of the closed-string σ-model were described. Those solutions,

which carry two angular momenta, have a profile that backtracks on itself to form a closed

contour. In our case the solutions will be half of the folded strings; instead of closing on

itself it will be connected to the part of the world-sheet with small σ and extend to the

boundary of AdS5.

The second integral of motion (4.36) in this limit is simply

µ2 = sin2 ψ +
(ψ′)2

w2
2 − w2

1

. (4.39)

This may immediately be solved by the elliptic integral of the first kind

σ
√

w2
2 − w2

1 =
1

µ
F

(

ψ,
1

µ

)

= F

(

arcsin
sinψ

µ
, µ

)

. (4.40)
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while ψ varies from zero to its maximal value arcsin µ, the world-sheet coordinate will vary

from 0 to the complete elliptic integral

σmax =
K(µ)

√

w2
2 − w2

1

. (4.41)

If this interval is of finite length, the angle ψ will oscillate an infinite number of times

along the world-sheet. Therefore we must take w2
1 → w2

2, which allows for a finite number

of oscillations (we take a single one). In this limit the variation of ψ as a function of σ

vanishes, justifying our approximation above, which assumed ψ′ = 0 to solve for θ.

Before proceeding with the calculation of the angular momentum carried by this solu-

tion, it’s worthwhile pausing to explain the geometry of this peculiar solution. For finite

values of σ, in most of AdS5, the solution will look exactly like the the single angular

momentum case, where ψ = 0 and θ will increase from 0 to π/2. Then for infinitely large

σ, at the center of AdS, there will be another patch of world-sheet where θ = π/2 and ψ

varies.

This second piece of the world-sheet is identical to half of a “folded-string” solution of

the closed-string σ-model. Instead of closing off on itself it is connected to the boundary

of space to describe the Wilson loop observable. In order for the two regimes to connect

smoothly in the conformal gauge, the part of the string where ψ varies has to be rescaled

by an infinite amount and will dominate in the calculation of the conserved charges. Then

the agreement between the closed spin-chain in the thermodynamic limit and the “folded-

string” solution [60] will automatically extend to our case, as we show now.

The quantum number carried by the string will be given by integrals over the solu-

tion (4.40) plus finite boundary terms from the region where sin θ 6= 1 and cosh ρ 6= 1. The

boundary terms are the same as for the single angular momentum case (4.11) and (4.12)

J1 =

√
λ

π
(J1 − tanh κσmax) ,

J2 =

√
λ

π
J2 ,

E =

√
λ

π
(E − coth κσmax) ,

(4.42)

where J1, J2 and E are the expression derived from the solution (4.40) and are essentially

identical to the folded-string expressions [72, 60].5 Those are given by complete elliptic

integrals of the first and second kind

J1 =

∫ σmax

0
dσ w1 sin2 θ(σ) cos2 ψ(σ) = w1σmax

E(µ)

K(µ)
,

J2 =

∫ σmax

0
dσ w2 sin2 θ(σ) sin2 ψ(σ) = w2σmax

(

1 − E(µ)

K(µ)

)

.

E = κσmax .

(4.43)

where for now we keep the σmax finite.

5To be precise, in our case they are a π/2 of those in [72, 60]. That is due to the normalization in (4.42)

and that the open string contains only half of the folded-string.
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These two equations together with the expressions for σmax (4.41) and the relation

κ2 = w2
1 + (w2

2 − w2
1)µ

2 may be summarized by

E2

K(µ)2
− J 2

1

E(µ)2
= µ2 ,

J 2
2

(K(µ) − E(µ))2
− J 2

1

E(µ)2
= 1 . (4.44)

These are the same equations as those of the folded 2-spin solution [72, 60].

with J = J1 + J2 we may expand these expressions at large J to find

J2

J ∼ 1 − E(µ)

K(µ)
, (4.45)

E ∼ J +
1

2J K(µ)
(

E(µ) − (1 − µ2)K(µ)
)

. (4.46)

Using those expressions we can go back to the full solution including the boundary ef-

fects (4.42). In the limit of large κσmax we find

J2

J
∼ 1 − E(µ)

K(µ)
, (4.47)

E ∼ J +
λ

2π2J
K(µ)

(

E(µ) − (1 − µ2)K(µ)
)

. (4.48)

To compare those expressions to (3.29) we define

µ = i
1 −

√
1 − k2

2(1 − k2)1/4
, (4.49)

and use the modular transformation of the elliptic integrals [60]

K(µ) = (1 − k2)1/4K(k) , 2E(µ) = (1 − k2)−1/4E(k) + (1 − k2)1/4K(k) , (4.50)

to find the relations

J2

J
∼ 1

2
− 1

2
√

1 − k2

E(k)

K(k)
, (4.51)

E ∼ J +
λ

8π2J
K(k)

(

2E(k) − (2 − k2)K(k)
)

. (4.52)

This is exactly the same as the results of the Bethe equations in the thermodynamic

limit (3.29) under the replacements J ↔ K, J2 ↔ M and γM ↔ E − J .

This agreement is a direct consequence of the relation between the folded strings and

the two-cut solution of the usual closed SU(2) spin-chain. On the spin-chain side the open

string is described by a single cut, the other cut is an image and all the charges are half

as in the close spin-chain case. The string theory solution is just half of the folded string

connected to the boundary of space and the extra boundary terms did not change the

relations between the charges at this order in the expansion in λ/J . We also expect that

the fluctuations of this open string, as in the example of the single spin, will be confined

to the middle of the string and not get close to the boundary, so their spectrum will be the

same (up to a numerical factor 1/4) to the closed-string analog.
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For closed strings a general classification of classical solutions carrying two charges

was provided in [73] which completely agrees with possible solutions of the SU(2) Bethe

ansatz in the thermodynamic limit. One may hope that a similar analysis will be valid

in our case. All the solutions of the open spin-chain thermodynamic Bethe ansatz can be

related to solutions of the closed system invariant under the symmetry u → −u for the

roots. Those should all be described by folded string solutions in the dual string theory. It

seems quite plausible to connect half of those strings to the boundary in a similar fashion

to the case studied above and thus describe more general Wilson loop observables.

5. Correlator with a local operator

Up to now we studied Wilson loops with two insertions of operators in the adjoint. We

may also look at the two point function between a loop with a single insertion and a local

operator. The case of the two point function of the loop with no insertion to a local

operator made up of Φ6 was considered in the past [74, 75] In that case agreement was

found between the perturbative calculation and that from AdS5 × S5.

Consider first a straight line with an insertion at the origin of a word made up of Zs

and Xs. Then take another single-trace local operator at time t and a distance r from

the line. Since the straight line as well as the origin are invariant under dilatation, we can

use the Ward identity associated with the broken dilatation symmetry to get the partial

differential equation

(r ∂r + t ∂t + ∆ + ∆′)
〈

Tr Ō′(t, r)W [O(0)]
〉

= 0 . (5.1)

The general solution to this equation takes the form

〈

Tr Ō′(t, r)W [O(0)]
〉

=
f(t/r)

(t2 + r2)(∆+∆′)/2
, (5.2)

where f(t/r) is an arbitrary function.

Due to the extra arbitrary function one cannot automatically associate all logarithmic

divergences with normalization of the conformal dimension ∆. Doing that, and fixing the

function f requires more work. Instead we will consider the case of r = 0, when the local

operator is along the line, and then f is just a constant, which may depend on the coupling,

but not on t. Then indeed all logarithmic divergences are associated to the renormalization

of ∆.

In the case of the circle, if the local operator is located at the position given by ρ, ψ

and r̃ defined in (2.10), the Ward identity associated with J0 is

r̃−∆′

(− cos ψ ∂ρ + coth ρ sin ψ ∂ψ + ∆)r̃∆′〈

Tr Ō′(ρ, ψ)W [O(∞, 0)]
〉

= 0 . (5.3)

Note that the circle is at ρ → ∞. The general solution to this equation takes the form

〈

Tr Ō′(ρ, ψ)W [O(∞, 0)]
〉

=
f(sinψ sinh ρ)

(2R(cosh ρ − sinh ρ cos ψ))∆r̃∆′ . (5.4)
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For ∆′ = ∆ the function in the denominator is the distance from the local operator to

the insertion at ψ = 0 along the Wilson loop to the power 2∆. Again f is an arbitrary

function, and we will restrict to the case where ρ → ∞, or the local operator sits on the

circle at radius R to eliminate that ambiguity.

At tree-level the Wilson loop will reduce to the trace of a local operator, and the two

point function will be zero unless O and O′ are identical up to cyclic transformation. At

one loop if we consider the diagrams that do not involve the Wilson loop, those again will

be the same as for two local operators. In addition there are graphs where the holonomy

is expanded to first or second order. The latter is finite, but the first has divergences.

So at the one-loop level these extra graphs will be the only difference from the system

of two single-trace local operators. Those graphs are the same as calculated in appendix A

and discussed in section 3.2. But while at each end of the integration region there is a

divergence, a careful accounting of the signs reveals that their sum vanishes.

Thus this system is described by the usual Heisenberg spin-chain in the SU(2) sector

H2 =
λ

8π2

K
∑

k=1

(I − Pk,k+1) . (5.5)

From this one-loop calculation one cannot see the difference between a local operator

described by a closed spin-chain and the Wilson loop, related to an open one. We expect

that at higher levels in perturbation theory, or when considering insertions of other fields

the situation will be more complicated. The Hamiltonian may contain more terms localized

near the endpoints of the insertion at k = 1 and k = K.

In the general case the system will be described by a closed loop with a marked point.

This marked point will provide all the extra interactions associated with the Wilson loop

and the impurities along the spin-chain which may be transmitted through it (as in the

one-loop calculation above) or reflected from it with certain amplitudes.

6. Discussion

The main idea of this paper is to consider small deformations of circular/straight Wilson

loops and study them using conformal field theory techniques. Local deformations of the

loop are analogous to insertions of adjoint operators into the loop and we concentrated on

insertions of words made of two complex scalar fields.

Since the Wilson loop without insertions preserves part of the superconformal group

which includes a factor of SL(2, R), we may classify local insertions in terms of represen-

tations of that group. Thus we associate a conformal dimension to operators transforming

in the adjoint representation. Calculating the dimensions of the scalar insertions we were

driven to study open spin-chains with very simple boundary conditions. We presented the

one-loop anomalous dimensions of those insertions both in the dilute gas approximation

and the thermodynamic limit by a simple modification of the standard results for closed

spin-chains.

We then went over to study the system in string theory, where the Wilson loop is given

by a classical string surface in AdS5 × S5. We found the relevant surfaces and calculated
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the anomalous dimensions of those operators at strong coupling. Again we found that

the string solutions is very similar to the ones for closed strings. Quite remarkably, it is

possible to take half of the closed “folded-string” solutions and instead of closing them on

themselves, extend them to the boundary of space in order to describe our Wilson loop

observables. The dimensions we calculated in this way agree with the perturbative results.

Clearly it would be interesting to study this system further in the usual ways: Go

beyond 1-loop to higher loop amplitudes, compare with the Hubbard model [5] and include

a wider class of insertions involving the other scalars, fermions and field-strengths. One

may also look at multiply wrapped Wilson loops as well as ’t Hooft loops. We expect those

to yield interesting open spin-chains that are definitely worth exploring.

Note that in all the discussion here the subtle difference between the line and the

circle [30] did not play any role. The anomalous dimension comes from divergences in the

loop that happen at short distances and therefore are not affected by this global issue. If

we were to calculate finite terms like the proportionality constant C in 〈W [O′(t)O(0)]〉 =

C/t2∆, this constant cannot depend on the distance but it can be a function of the coupling

and may be different for the line and the circle.

Our main motivation is not finding spin-chains, those are merely a fascinating calcula-

tional tool. It is studying Wilson loop operators, some of the most interesting observables

in gauge theories. Instead of studying the most general operators following an arbitrary

path we focused on small deformations of the circular/straight operator. In principle it is

possible to build back an arbitrary path from many such insertions, but it will require a

lot more work.

We see here that it is possible to treat the Wilson loop in a similar fashion to a defect

CFT [76 – 78]. Those are theories with extra degrees of freedom living on a sub-manifold,

but still preserving part of the conformal group. Here though, the Wilson loop and the

insertions that we attach to it are already an integral part of the theory and one does not

have to introduce extra degrees of freedom. The most novel thing about this CFT living

on the Wilson loop is that it allows operators that are not singlets of the gauge group!
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A. Interaction of a local insertion with the Wilson loop

We show here the details of the calculation of the Feynman graph depicted in figure 3.

This graph gives the boundary term for the spin chain. The result can be extracted from

the calculations of Erickson, Semenoff and Zarembo [29] and we follow their conventions.
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It is enough to consider the correlator of a single Z and a single Z̄ insertion into the

straight Wilson loop. The relevant graph is the exchange of a gluon between the scalar

propagator and the Wilson loop.

Let us take one scalar at the origin (t1), another at t3 = t > t1 and a gauge field (from

the expansion of the Wilson loop) at t2 between them. There will be another graph when

t2 is outside of this interval, doubling the final answer. This graph is equal to

1

N

∫ t3

t1

dt2
〈

Tr [Z̄(t3)iAt(t2)Z(t1)]
〉

. (A.1)

Here Z(t) = Za(t)T a, where T a are the generators of U(N) obeying

∑

a

T aT a =
N

2
1 . (A.2)

We contract this with the vertex

− 1

g2
YM

∫

d4w fabc
(

∂µZa(w)Ab
µ(w)Z̄c(w) + c.c.

)

. (A.3)

After contracting Z with Z̄ and the gauge fields with the term written explicitly above

in the vertex, the trace gives a factor of

− 1

g2
YMN

Tr (T aT bT c)fabc = −i
N2

4g2
YM

. (A.4)

This term has a derivative acting on the w coordinate in the w-t3 propagator, or a (−∂3)

derivative. The complex conjugate term in the vertex gives a similar term with ∂1.

So this graph contributes

N2

4g2
YM

∫

dt2

∫

d4w (∂1 − ∂3)G(w − t1)G(w − t2)G(w − t3) . (A.5)

where G is the scalar propagator. This integral will diverge when w ∼ t2 ∼ t1 and when

w ∼ t2 ∼ t3.

Near the origin we may replace G(t3 − w) = G(t3 − t1) and then the integral over w

will give a result that depends only on t2 − t1 and from dimensional grounds ln(t2 − t1).

More precisely
∫

d4w G(t2 − w)G(t1 − w) = −g4
YM

8π2
ln(t2 − t1) , (A.6)

where an IR cutoff has to be included to make the log well defined.

The ∂3 derivative gives a finite answer, but the ∂1 not. It gives a total derivative with

respect to the t2 integral, which we cutoff at t2 − t1 = ε ∼ 1/Λ, so the final result is

− λ2

27π4t2
ln ε =

λ2

27π4t2
ln Λ . (A.7)

Recall that the tree-level result was λ/8π2t2, so to get a finite answer we have to renormalize

the operator by

Zboundary = I − 4
λ

16π2
ln Λ . (A.8)
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The factor of 4 comes from the two limits of the above integral as well as the other graph

with t2 > t3 and t2 < t1. This boundary Z-term exactly cancels that from the self-energy

correction, as was already observed in [29]. Note that we will associate half of it with each

of the local insertions into the loop, giving (3.9).
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